
Research Findings: Unity Plugins 
	 Date	 8 August 2015               
	Researcher	 Paul Lee     

1. Background

Our client has asked us to create a GPS plugin as a first part of the ‘proof of concept’ application 
they would like us to create.  

2. Objectives

Get an understanding of what a plugin is, how to write a plugin, what makes a good plugin.  

3. Approach

Look in to Unity tutorials, read articles and online resources. 

4. Findings

4.1. From Unity – “Plugins allow us to access native code (either managed or unmanaged) 

within Unity. This gives us access to powerful hardware not available on all devices, 
such as trackpads, cameras, an Oculus Rift, etc. (Unity3d.com, 2015)  

4.2. A plugin also could be known as an add-in, extension or add-on. A plugin is a software 
component that adds a specific feature to an existing software application. When 
software allows plugins to be added it lets the application have lots of customisation.  

4.2.1. Common software where plugins are found are in web browsers, new features 
such as virus scanners, ad blockers, script writers etc. are all examples of plugins. 
A very well-known plugin is the Java plugin which lets the browser launch java 
apps.    

4.2.2. It encourages 3rd part developers to create more exciting features for an 
application.  

4.2.3. It reduces the size of an application as users can choose which feature they want 
or need and do not have to install ones they don’t need.  

4.2.4. The application is easily able to support new features.  

4.3. In Unity you normally use scripts to create functionality but you can also use plugins 
that have been created outside of Unity. There are two kinds of plugins that you can 
use in Unity: Managed Plugins and Native Plugins. 

4.3.1. Managed Plugins are managed in .NET assemblies created with tools like visual 
studio. They only contain .NET code and can’t access features that are not 
supported by the .NET library. Managed code is able to access the standard .NET 
tools that Unity uses to compile scripts, there is little difference between a 
managed plugin and a Unity script, expect for the fact it is developed outside of 
Unity. 

4.3.2. Native Plugins are platform-specific code libraries, they can access features like 
OS calls and third-part code libraries that would otherwise not be available in 
Unity. But these libraries are not accessible to Unity’s tools in the way that 
managed libraries are. You will get standard compiler error messages if you forget 
to add a managed plugin file to the project but only an error report if you do the 
same with a native plugin. 



5. Further Investigation

5.1. Creating a test platform so that we can test the plugins that we have created. 

5.2. How do we make sure that it can be used in any application/platform? 

5.3. Coding standards for plugins 

6. Recommendations

6.1. Make sure that we are not creating any ‘god’ classes. This is a ‘one-class-fits-all’ kind 

of mentality. Creating multiple classes will produce much simpler, easier to read code. 

6.2. Even just a separate class for a simple operation is nicer than sticking it somewhere it 
doesn’t belong. 

7. References


Unity3d.com,. (2015). Unity - Writing Plugins. Retrieved 8 August 2015, from https://
unity3d.com/learn/tutorials/modules/beginner/live-training-archive/writing-plugins 

Wikipedia,. (2015). Plug-in (computing). Retrieved 8 August 2015, from https://
en.wikipedia.org/wiki/Plug-in_%28computing%29  

Technologies, U. (2015). Unity - Manual: Plugins. Docs.unity3d.com. Retrieved 8 August 
2015, from http://docs.unity3d.com/Manual/Plugins.html

https://unity3d.com/learn/tutorials/modules/beginner/live-training-archive/writing-plugins
https://unity3d.com/learn/tuto
http://docs.unity3d.com

